Abstract
Parkinsonian tremor (PD), essential tremor (ET) and voluntarily mimicked tremor represent fundamentally different motor phenomena, yet, magnetoencephalographic and imaging data suggest their origin in the same motor centers of the brain. Using EEG-EMG coherence and coherent source analysis we found a different pattern of corticomuscular delays, time courses and central representations for the basic and double tremor frequencies typical for PD suggesting a wider range defective oscillatory activity. For the basic tremor frequency similar central representations in primary sensorimotor, prefrontal/premotor and diencephalic (e.g. thalamic) areas were reproduced for all three tremors. But renormalized partial directed coherence of the spatially filtered (source) signals revealed a mainly unidirectional flow of information from the diencephalon to cortex in voluntary tremor, e.g. a thalamocortical relay, as opposed to a bidirectional subcortico-cortical flow in PD and ET promoting uncontrollable, e.g. thalamocortical, loop oscillations. Our results help to understand why pathological tremors although originating from the physiological motor network are not under voluntary control and they may contribute to the solution of the puzzle why high frequency thalamic stimulation has a selective effect on pathological tremor leaving voluntary movement performance almost unaltered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.