Abstract
Tipicamente, pequenas oscilações em torno de um ponto de equilíbrio estável são movimentos harmônicos simples com frequência determinada pelo valor da segunda derivada da energia potencial no ponto de equilíbrio. Há casos anômalos, no entanto, em que a segunda derivada é nula e o termo de quarta ordem domina a expansão da energia potencial nas vizinhanças do mínimo. Neste caso, as pequenas oscilações são descritas pelo oscilador quártico. Por meio de um exemplo simples, em que ocorre a referida anomalia, discutimos o oscilador quártico e mostramos como sua equação de movimento pode ser resolvida em termos de funções elípticas de Jacobi. O exemplo oferece a oportunidade de familiarizar estudantes de graduação com essas funções importantes que não constam no currículo padrão dos cursos de física.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.