Abstract
Although multiwing hidden attractor chaotic systems have attracted a lot of interest, the currently reported multiwing hidden attractor chaotic systems are either with no equilibrium point or with an infinite number of equilibrium points. The multiwing hidden attractor chaotic systems with stable equilibrium points have not been reported. This paper reports a four-wing hidden attractor chaotic system, which has only one stable node-focus equilibrium point. The novel system can also generate a hidden attractor with one-wing and hidden attractors with quasi-periodic and periodic coexistence. In addition, a self-excited attractor with one-wing can be generated by adjusting the parameters of the novel system. The hidden attractors of the novel system are verified by the cross-section of attraction basins. And the hidden behavior is investigated by choosing different initial states. Moreover, the coexisting transient four-wing phenomenon of the self-excited one-wing attractor system is studied by the time domain waveforms and attraction basin. The dynamical characteristics of the novel system are studied by Lyapunov exponents spectrum, bifurcation diagram and Poincaré map. Furthermore, the novel hidden attractor system with four-wing and one-wing are implemented by electronic circuits. The hardware experiment results are consistent with the numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.