Abstract

Rice is a staple cereal crop worldwide, and increasing its yields is vital to ensuring global food security. Salinity is a major factor that affects rice yield. Therefore, it is necessary to investigate salt tolerance mechanisms in rice. Proteins containing WD40 repeats play important roles in eukaryotic development and environmental adaptation. Here, we showed that overexpression of OsABT, a gene encoding a WD40-repeat protein, enhanced salt tolerance in rice seedlings by regulating root activity, relative conductivity, malondialdehyde and H2O2 content, and O2•− production rate. Root ion concentrations indicated that OsABT overexpression lines could maintain lower Na+ and higher K+/Na+ ratios and upregulated expression of salt-related genes OsSOS1 and OsHAK5 compared with the wild-type (WT) Nipponbare plants. Furthermore, Overexpression of OsABT decreased the abscisic acid (ABA) content, while downregulating the ABA synthesis genes OsNCED3 and OsNCED4 and upregulating the ABA catabolic gene OsABA8ox2. The yeast two-hybrid and bimolecular fluorescence complementation analyses showed that OsABT interacted with the ABA receptor proteins OsPYL4, OsPYL10, and PP2C phosphatase OsABIL2. A transcriptome analysis revealed that the differentially expressed genes between OsABT overexpression lines and WT plants were enriched in plant hormone signal transduction, including ABA signaling pathway under salt stress. Thus, OsABT can improve the salt tolerance in rice seedling roots by inhibiting reactive oxygen species accumulation, thereby regulating the intracellular Na+/K+ balance, ABA content, and ABA signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call