Abstract
To select an efficient carrier for loading and sustainedly releasing naringin (NAR), complexes of porous starch (PS) and NAR (PS-NAR) as well as those of octenyl succinic anhydride (OSA) esterified PS and NAR (OSAPS-NAR) with different degree of substitution (DS) were prepared by an ultrasonic method with an ethanol solution. The micro-morphological features, structural and thermal properties of complexes and their constituents were characterized, and in vitro release rate and kinetic of NAR from complexes were investigated. The findings revealed that NAR was successfully loaded in PS/OSAPS in an amorphous form, and the NAR's loading efficiency improved as DS increased, reaching 86.85 % at DS 0.0427. NAR cumulative release rate from the complexes in simulated digestion fluids was much higher than that of free (unloaded) NAR, but decreased as DS increased. NAR's in vitro release from complexes mainly depended on the carrier rather than NAR itself, and OSAPS with higher DS had stronger protection and slower release effect on NAR. The results would provide a new means for starch-based carrier construction to develop an efficient delivery and sustainedly releasing system for NAR, thus broadening the application ranges both for modified starch and citrus flavonoids such as NAR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have