Abstract

Benzidine and its 3,3′-diamino, 3,3′-dimethyl, 3,3′-dimethoxy, 3,3′-difluoro, 3,3′-dichloro, 3,3′-dibromo, 3,3′-dicarbomethoxy and 3,3′-dinitro derivatives together with 2-nitrobenzidine and 3-nitrobenzidine were compared for their in vitro and in vivo genotoxicity. Relative mutagenicity was established with Salmonella strains TA98, TA98/1,8-DNP 6 and TA100 with and without S9 activation. All the derivatives in the presence of S9 were more mutagenic than benzidine with 3,3′-dinitro- and 3-nitro-benzidine having the greatest mutagenicity. Mutagenicity in all 3 strains with S9 activation could be correlated to electron-withdrawing ability of substituent groups, as measured by the basicity of the amines. This correlation was explained on the basis that electron-withdrawing groups could favor the stability of the mutagenic intermediate N-hydroxylamine and also enhance the reactivity of the ultimate mutagenic species, the nitrenium ion. Mutagenicity was also correlated to the energy of the lowest unoccupied molecular orbitals ( E LUMO). Hydrophobicity was found to have very limited effect on the relative mutagenicity of our benzidine derivatives. The in vivo endpoint was chromosomal aberrations in the bone-marrow cells of mice following intraperitoneal administration of benzidine and its derivatives. In contrast to the in vitro results, while all the amines were genotoxic in vivo, only the 3-nitro derivative had a significant increase in toxicity over benzidine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.