Abstract

In this paper, a novel fractal-fractional derivative operator with Mittag-Leffler function as its kernel is introduced. Using this differentiation, the fractal-fractional model of the coupled nonlinear Schrödinger-Boussinesq system is defined. The orthonormal shifted discrete Chebyshev polynomials are generated and used for constructing a computational matrix method to solve the defined system. In the established method, using the matrices of the ordinary and fractal-fractional differentiations of these polynomials, the fractal-fractional system transformed into a system of algebraic equations, which is solved readily. Practicability and precision of the method are examined by solving two numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.