Abstract

The main objective is to generalize previous results obtained for orthogonal Laurent polynomials and their application in the context of Stieltjes moment problems to the multipoint case. The measure of orthogonality is supposed to have support on [ 0 , ∞ ) while the orthogonal rational functions will have poles that are assumed to be “in the neighborhood of 0 and ∞ ”. In this way orthogonal Laurent polynomials will be a special case obtained when all the poles are at 0 and ∞ . We shall introduce the restrictions on the measure and the locations of the poles gradually and derive recurrence relations, Christoffel–Darboux relations, and the solution of the rational Stieltjes moment problem under appropriate conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.