Abstract
Neural networks researches are developed for the recent machine learnings. To improve the performance of the neural networks, the biological inspired neural networks are often studied. Models for motion processing in the biological systems have been used, which consist of the symmetric networks with quadrature functions of Gabor filters. This paper proposes a model of the bio-inspired asymmetric neural networks, which shows excellent ability of the movement detection. The prominent features are the nonlinear characteristics as the squaring and rectification functions, which are observed in the retinal and visual cortex networks. In this paper, the proposed asymmetric network with Gabor filters and the conventional energy model are analyzed from the orthogonality characteristics. It is shown that the biological asymmetric network is effective for generating the orthogonality function using the network correlation computations. Further, the asymmetric networks with nonlinear characteristics are able to generate independent subspaces, which will be useful for the creation of features spaces and efficient computations in the learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.