Abstract

Visual motion information is useful for many complex tasks in the biological and robotic systems. Models for motion processing in the biological systems have been studied to use conventional symmetric quadrature functions with Gabor filters. This paper proposes a model of the another bio-inspired asymmetric neural networks. The prominent features are the nonlinear characteristics as the squaring and rectification functions, which are observed in the retinal and visual cortex networks. In this paper, the asymmetric network with Gabor filters is compared with that of the conventional symmetric networks. It is shown that the biological asymmetric network with nonlinearities is effective for detecting the inputted phase information and directional movements from the network computations. The responses to the frequency characteristics and to the complex motion stimulus are computed in the asymmetric networks, which are not derived for the conventional energy model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.