Abstract

Abstract This paper considers the problem of orthogonal polynomial approximation based balanced truncation for a lowpass filter. The proposed method combines the system properties of balanced truncation, the computational effectiveness of proper orthogonal decomposition and the approximation capability of the orthogonal polynomials approximation. Orthogonal polynomials series expansion of the reachability and observability gramians is used in order to avoid solving large-scale Lyapunov equations and thus, significantly reducing the computational effort for obtaining the balancing transformation. The proposed method is applied for model reduction of a lowpass analog filter. Different sets of orthonormal functions are obtained from Legendre, Laguerre and Chebyshev orthogonal polynomials and the corresponding reduced order models are compared. The approximation precision is measured by the relative mean square error between the outputs of the full order model and the obtained reduced order models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.