Abstract
Bayes spaces were initially designed to provide a geometric framework for the modeling and analysis of distributional data. It has recently come to light that this methodology can be exploited to construct an orthogonal decomposition of a bivariate probability density into an independence and an interaction part. In this paper, new insights into these results are given by reformulating them using Hilbert space theory, and a multivariate extension is developed using a distributional analog of the Hoeffding–Sobol identity. A connection is also made between the resulting decomposition of a multivariate density and its copula-based representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.