Abstract

Abstract The Indian Ocean dipole (IOD) is the dominant mode of interannual variability in the tropical Indian Ocean (TIO), characterized by warming (cooling) in western TIO and cooling (warming) in eastern TIO during its positive (negative) phase. Observed IOD events exhibit distinct amplitude asymmetry in relation to negative nonlinear dynamic heating. Nearly all models in phase 5 of the Coupled Model Intercomparison Project (CMIP) simulate a less-skewed IOD than observed, but 6 out of 20 CMIP6 models can reproduce realistic high skewness. Analysis of less-skewed models indicates that the positive IOD-like biases in the mean state, which can be traced back to their weaker simulations of the preceding Indian summer monsoon, reduce the convective response to positive sea surface temperature anomalies in the western TIO, resulting in a weaker zonal wind response and weaker nonlinear zonal advection during positive IOD events. Besides, ocean stratification in the eastern TIO influences the IOD skewness: stronger stratification leads to larger mixed-layer temperature response to thermocline changes, contributing to larger anomalous vertical temperature gradient, larger nonlinear vertical advection, and thus stronger positive IOD skewness. Our findings underscore the importance of reducing Indian summer monsoon biases and eastern TIO stratification biases, for properly representing the IOD in Earth system models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call