Abstract

Key points The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial.This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN).Under β‐adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy.Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced.Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN.These neurones provide functionally significant parasympathetic control of left ventricular inotropy. The strength, functional significance and origins of direct parasympathetic innervation of the left ventricle (LV) remain controversial. In the present study we used an anaesthetized rat model to first confirm the presence of tonic inhibitory vagal influence on LV inotropy. Using genetic neuronal targeting and functional neuroanatomical mapping we tested the hypothesis that parasympathetic control of LV contractility is provided by vagal preganglionic neurones located in the dorsal motor nucleus (DVMN). It was found that under systemic β‐adrenoceptor blockade (atenolol) combined with spinal cord (C1) transection (to remove sympathetic influences), intravenous administration of atropine increases LV contractility in rats anaesthetized with urethane, but not in animals anaesthetized with pentobarbital. Increased LV contractility in rats anaesthetized with urethane was also observed when DVMN neurones targeted bilaterally to express an inhibitory Drosophila allatostatin receptor were silenced by application of an insect peptide allatostatin. Microinjections of glutamate and muscimol to activate or inhibit neuronal cell bodies in distinct locations along the rostro‐caudal extent of the left and right DVMN revealed that vagal preganglionic neurones, which have an impact on LV contractility, are located in the caudal region of the left DVMN. Changes in LV contractility were only observed when this subpopulation of DVMN neurones was activated or inhibited. These data confirm the existence of a tonic inhibitory muscarinic influence on LV contractility. Activity of a subpopulation of DVMN neurones provides functionally significant parasympathetic control of LV contractile function.

Highlights

  • The heart is controlled by the parasympathetic and sympathetic limbs of the autonomic nervous system

  • In animals anaesthetized with urethane, inhibition of the left caudal dorsal vagal motor nucleus (DVMN) following microinjections of muscimol increased LVdP/dtmax, LV end systolic pressure (LVESP), mean arterial blood pressure (MAP) and heart rate (Supporting Information, Table S5, Fig. 6)

  • In the present study we tested the hypothesis that tonic parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones that reside in the DVMN

Read more

Summary

Machhada and others

Abbreviations ABP, arterial blood pressure; ACh, acetylcholine; AlstR, allatostatin receptor; DVMN, dorsal vagal motor nucleus; Ees, end-systolic elastance; eGFP, enhanced green fluorescent protein; LV, left ventricle; LVdP/dtmax, maximum of the first differential of LVP; LVEDP, left ventricular end diastolic pressure; LVESP, left ventricular end systolic pressure; LVP, left ventricular pressure; LVV, lentiviral vector; MAP, mean arterial pressure

Introduction
Methods
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.