Abstract

Organic thin films that have no overall in-plane directional ordering often nonetheless produce anisotropic scattering patterns that rotate with the polarization of incident resonant X-rays. Isotropic symmetry is broken by local correlations between molecular orientation and domain structure. Such examples of molecular alignment at domain interfaces and within the bulk of domains, which are both critical to fields such as organic electronics, are simulated and compared with experimental scattering. Anisotropic scattering patterns are found to allow unambiguous identification of the mechanism of local molecular orientation correlations and, as such, promise to be both distinct and complementary to isotropic scattering intensity as a general measure of thin film microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.