Abstract

The geodynamic regime(s) that predominated during the Archaean remains controversial, with the plethora of competing models largely informed by felsic lithologies. Ultramafic-mafic rocks displaying distinctive geochemical signatures are formed in a range of Phanerozoic geotectonic environments. These rocks have high melting points, making them potentially useful tools for investigating Archaean geodynamic processes in highly metamorphosed regions. We present field mapping, petrography, traditional bulk-rock geochemistry, and platinum-group element geochemistry for 12 ultramafic-mafic bodies in the Lewisian Gneiss Complex (LGC), which is a highly metamorphosed fragment of the North Atlantic Craton in northwest Scotland. Our data indicate that most of these occurrences are layered intrusions emplaced into the tonalite-trondhjemite-granodiorite (TTG)-dominated crust prior to polyphase metamorphism, representing a significant re-evaluation of the LGC's magmatic evolution. Of the others, two remain ambiguous, but one (Loch an Daimh Mor) has some geochemical affinity with abyssal/orogenic peridotites and may represent a fragment of Archaean mantle, although further investigation is required. The ultramafic-mafic bodies in the LGC thus represent more than one type of event/process. Compared with the TTG host rocks, these lithologies may preserve evidence of protolith origin(s), with potential to illuminate tectonic setting(s) and geodynamic regimes of the early Earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call