Abstract

Nonattracting chaotic sets (chaotic saddles) are shown to be responsible for transient and intermittent dynamics in an extended system exemplified by a nonlinear regularized long-wave equation, relevant to plasma and fluid studies. As the driver amplitude is increased, the system undergoes a transition from quasiperiodicity to temporal chaos, then to spatiotemporal chaos. The resulting intermittent time series of spatiotemporal chaos displays random switching between laminar and bursty phases. We identify temporally and spatiotemporally chaotic saddles which are responsible for the laminar and bursty phases, respectively. Prior to the transition to spatiotemporal chaos, a spatiotemporally chaotic saddle is responsible for chaotic transients that mimic the dynamics of the post-transition attractor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.