Abstract

Amidoxime-functionalized polymeric adsorbents are the current state-of-the-art materials for collecting uranium (U) from seawater. However, marine tests show that vanadium (V) is preferentially extracted over U and many other cations. Herein, we report a complementary and comprehensive investigation integrating ab initio simulations with thermochemical titrations and XAFS spectroscopy to understand the unusually strong and selective binding of V by polyamidoximes. While the open-chain amidoxime functionalities do not bind V, the cyclic imide-dioxime group of the adsorbent forms a peculiar non-oxido V5+ complex, exhibiting the highest stability constant value ever observed for the V5+ species. XAFS analysis of adsorbents following deployment in environmental seawater confirms V binding solely by the imide-dioximes. Our fundamental findings offer not only guidance for future optimization of selectivity in amidoxime-based sorbent materials, but may also afford insight to understanding the extensive accumulation of V in some marine organisms.

Highlights

  • Amidoxime-functionalized polymeric adsorbents are the current state-of-the-art materials for collecting uranium (U) from seawater

  • The combined computational and experimental findings provided here represent a significant step toward a fundamental understanding of the selective adsorption of metal ions from seawater by polymeric adsorbent materials

  • The majority of studies in this area were mostly focused on the extraction of uranium from seawater, with considerable experimental work done in the 1990 s in Japan, where repeated screening programs identified amidoximefunctionalized polymers as the most promising candidate adsorbent[37]

Read more

Summary

Introduction

Amidoxime-functionalized polymeric adsorbents are the current state-of-the-art materials for collecting uranium (U) from seawater. In striking contrast to cyclic imide-dioxime (H3IDO), the results for open-chain amidoxime (HAO) revealed that, despite a large excess of the ligand in speciation modeling (Supplementary Fig. 4), no complex formation was observed over the entire pH range, indicating that all identified V(V)/HAO

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.