Abstract

The lateral photovoltaic (LPV) effect has attracted much attention for a long time because of its application in position-sensitive detectors (PSD). Here, we report the ultrafast response of the LPV in amorphous MoS2/Si (a-MoS2/Si) junctions prepared by the pulsed laser deposition (PLD) technique. Different orientations of the built-in field and the breakover voltages are observed for a-MoS2 films deposited on p- and n-type Si wafers, resulting in the induction of positive and negative voltages in the a-MoS2/n-Si and a-MoS2/p-Si junctions upon laser illumination, respectively. The dependence of the LPV on the position of the illumination shows very high sensitivity (183 mV mm-1) and good linearity. The optical relaxation time of LPV with a positive voltage was about 5.8 μs in a-MoS2/n-Si junction, whereas the optical relaxation time of LPV with a negative voltage was about 2.1 μs in a-MoS2/p-Si junction. Our results clearly suggested that the inversion layer at the a-MoS2/Si interface made a good contribution to the ultrafast response of the LPV in a-MoS2/Si junctions. The large positional sensitivity and ultrafast relaxation of LPV may promise the a-MoS2/Si junction's applications in fast position-sensitive detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.