Abstract

Photocurrent of a single ZnO nanowire synthesized by a sol-gel route was investigated. In vacuum, the dark current was bigger but the photoresponse was slower than that in air, attributed to the release of the available charge carriers by the desorption of water molecules and the decrease of the exchange rates of molecular ions. Under the steady radiation of the ultraviolet light (λ=325nm), a gradual decrease of the photocurrent was noticeable, which can be explained in terms of the annihilation of the carriers by the replacement of hydroxyl groups (OH−) by O2−, resulting in the decrease of charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.