Abstract
The electrical transport in the half-Heusler phases LuNiSb and YPdSb was measured in a temperature range 2--300 K. For both compounds, the electrical resistivity was found to decrease with increasing temperature, showing a linear-in-$T$ behavior over an extended temperature interval. In order to interpret the experimental data, a two-channel conductivity model was applied, which revealed that not only the semiconducting-like transport but also the metallic-like one exhibit negative temperature coefficients. The unusual behavior in the metallic channel was described within the Cote-Meisel formalism based on the diffraction model of strongly disordered metals. In addition, a weak localization scenario was considered including spin-orbit scattering and Coulomb interaction between conducting electrons. The electron-electron interaction was found most important at the lowest temperatures, where the semiconducting channel becomes ineffective, reminiscent of charge transport confined to a narrow yet finite-size metallic band located inside the semiconducting energy gap. The low-temperature resistivity of YPdSb appeared fully describable in terms of the Altshuler-Aronov quantum correction due to interacting electrons. In turn, the electronic transport in LuNiSb was found affected by the Kondo effect associated with a small amount of paramagnetic impurities present in the specimen investigated. The approach developed for LuNiSb and YPdSb can be applied to other half-Heusler compounds that exhibit atom disorder in their crystal structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.