Abstract
Pairs of leucine side chains, spaced either (i,i+3) or (i,i+4), are known to stabilize alanine-based peptide helices, Experiments with new peptide sequences confirm that the (i,i+4) pair interaction is markedly stronger than the (i,i+3) pair interaction. This result is not expected from reported Monte Carlo simulations, which predict that the (i,i+3) interaction is slightly stronger. The interaction strength can be predicted from recently reported measurements of buried non-polar surface area, obtained from structures in the Protein Data Bank: the agreement is reasonable for the (i,i+3) LL interaction but underestimates the (i,i+4) LL interaction. Solvation of peptide groups in the helix backbone may contribute to the different strengths of the two LL pair interactions because different χ 1 leucine rotamers are used and the (i,i+3) pair shields two peptide groups whereas the (i,i+4) pair shields only one. A rough estimate of the backbone solvation effect, based on the difference between the helix propensities of leucine and alanine, agrees with the size of the difference between the (i,i+3) and (i,i+4) leucine pair interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.