Abstract
We studied size-dependent dynamics of defect-based photoluminescence of colloidal γ-Ga2O3 nanocrystals in the framework of the donor-acceptor pair model. Two theoretical models were developed based on relative positioning of donor and acceptor sites: (1) for random distribution of defects throughout the nanocrystal volume and (2) for surface segregation of defects. The results of the modeling indicate that defect sites are predominantly located in the vicinity of nanocrystal surfaces and that the density of defects increases with decreasing nanocrystal size. The donor Bohr radius obtained as a fitting parameter suggests an increase in the donor binding energy with decreasing nanocrystal size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.