Abstract

AbstractPore-lining chlorite is common in Rotliegend lake shoreline aeolian sandstones from northern Germany and preserves abnormally high primary intergranular porosity. In the north of the study area, in a basinward direction, the chlorites are Mg-rich while towards the south they become Fe-rich over a distance of about 15 km. All are unusually rich in Mn. Magnesium-rich examples tend to be more abundant than illite, while Fe-rich examples cover framework grains less continuously and are admixed with more abundant illite. Oxygen isotope analysis of 30 chlorites in the 2–6 µm fraction gave δ18O (SMOW) values of 7 to 12‰ (mean 9.8‰). These data show no obvious trend across the study area, nor in relation to changes in chlorite composition, or burial depth.The honeycomb arrangement of chlorite crystals suggests chlorite formation via the sequence smectite-corrensite-chlorite. Chlorite distribution and the systematic changes in its composition suggest that formation of a precursor was related to lateral migration of Mg-rich fluids from basinal shales and/or evaporites during shallow burial. Interaction of these fluids with early formed oxyhydroxide coatings on the aeolian sand grains provided a source of Fe and the Mn. The isotope data suggest that the eventual formation of chlorite during deep burial occurred from waters with positive δ18O values, comparable to those present during the deep burial formation of illite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.