Abstract

A positive correlation between the δ13C and δ18O values of carbonate rocks is a screening tool widely used to identify the overprint of meteoric diagenesis on the original isotopic composition of a sample. In particular, it has been suggested that systematic change from negative to positive δ13C and δ18O values with increasing depth in the core is an indicator of alteration within the zone of mixing between meteoric and marine waters. In this paper, we propose that such covariance is not generated within the traditionally defined mixing zone, and that positive correlations between δ13C and δ18O values in marine carbonates are not necessarily indicators of meteoric alteration. This new interpretation is based on data collected from the shallow sub-surface of the Bahamas, a region unequivocally influenced by meteoric waters to depths of at least 200m below the current sediment-water interface. The classic interpretation of the diagenetic environments, based on changes in the δ13C and δ18O values, would suggest the maximum penetration of freshwater occurs between 65 and 100m below seafloor. Below these depths, a strong positive covariation between the δ13C and δ18O values exists, and would traditionally be defined as the mixing zone. However, based upon known changes in sea level, the penetration of the freshwater lens extends significantly below this limit. We contend that the zone showing covariance of δ13C and δ18O values is actually altered within the freshwater lens, and not the mixing zone as previously proposed. The co-varying trend in δ13C and δ18O values is the result of diagenetic processes occurring at the interface between vadose and phreatic zones. Significantly greater rates of recrystallization and neomorphism are driven by the increased rates of oxidation of organic matter at this transition with progressively less alteration occurring with increasing depth. As sea level oscillates, the position of this interface moves through the deposit, causing cumulative alteration throughout the section. Hence, we propose that the covariation between δ13C and δ18O values is a consequence of varying degrees of alteration, rather than the result of diagenesis occurring within the zone where marine and freshwater fluids mix. Furthermore, within the pervasively altered vadose zone, there is little correlation between δ13C and δ18O values, and therefore covariation between δ13C and δ18O values is not an unequivocal indicator of meteoric diagenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call