Abstract
SrTiO3 (STO) displays a broad spectrum of physical properties, including superconductivity, ferroelectricity, and photoconductivity, making it a standout semiconductor material. Despite extensive research, the oxygen partial pressure-dependent conductivity in STO has remained elusive. This study leverages first-principles calculations and systematically investigates the intrinsic defect properties of STO. The results reveal that VO, VSr, and TiSr are the dominant intrinsic defects, influencing STO's conductivity under varying O chemical potentials (oxygen partial pressures). Under O-poor condition, VO is the predominant donor, while VSr is the main acceptor. As the oxygen pressure increases, TiSr emerges as a critical donor defect under O-rich conditions, significantly affecting the conductivity. Additionally, the study elucidates the abnormal phenomenon where VTi, typically an acceptor, exhibits donor-like behavior due to the formation of O-trimer. This work offers a comprehensive understanding of how intrinsic defects tune the Fermi level, thereby altering STO's conductivity from metallic to n-type and eventually to p-type across different O chemical potentials. These insights resolve the long-standing issue of oxygen partial pressure-dependent conductivity and explain the observed metallic conductivity in oxygen-deficient STO.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have