Abstract

The host effect of the supramolecular [Ga4L6]12- tetrahedral metallocage on Prins cyclization reaction of the substrate by encapsulated citronellal has been investigated by means of molecular dynamics and quantum mechanics. The encapsulation process of the substrate into the [Ga4L6]12- cavity was simulated via attach-pull-release (APR) methods. Thermodynamic calculations and classical molecular dynamics simulations assessed the substrate's microenvironment inside the cavity, guiding DFT-level modeling of the reaction. DFT calculations show diol product predominance in acidic solution but high enol selectivity inside [Ga4L6]12-, consistent with experimental findings. [Ga4L6]12- alters the selectivity of the Prins cyclization reaction by inhibiting diol formation. The activation strain model-based decomposition analysis (ASM-DA) of the barrier difference among distortion and interaction terms indicates that the more positive interaction between a host and guest in the diol transition state than enol determines the product selectivity, particularly the fewer C-H···O and O-H···O hydrogen-bonding interactions. These theoretical insights could contribute to a deeper understanding of the nature of supramolecular catalysis and to further develop new supramolecular catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.