Abstract
Time-dependent density functional theory (TDDFT) calculations are employed to examine the optical absorption and circular dichroism (CD) spectra of undecagold Au(11)L(4)X(2)(+) (X = Cl, Br) complexes and their Au(2)X(2)L precursors, where L is either 2,2'-bis(diphenylphosphino)-1,1'-binaphtyl (BINAP) or 1,4-diphosphino-1,3-butadiene (dpb). These systems exhibit intense and mirror-image Cotton effects in their CD spectra. Experimental peak positions are well reproduced in the calculations. The low energy peaks of Au(11)L(4)X(2)(+) arise primarily from transitions between delocalized metal superatom orbitals. Bidentate phosphine ligands have both a structural and electronic impact on the system. The lowest energy structure of Au(11)L(4)X(2)(+) has a chiral C(2) geometry, whereas monodentate phosphine ligands lead to a C(1) structure. In addition, the chiral core structure of Au(11)L(4)X(2)(+) is not sufficient to explain the strong Cotton effects, and the intensity of the CD spectrum is increased by the presence of the bidentate phosphine ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.