Abstract

Magmatic oxide mineralization widely developed in syenite–gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe–Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet’ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe–Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10–15 vol %, reaching 30–70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe–Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe–Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe–Ti oxides makes it possible to consider them complex ores. It is shown that the Fe–Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and Ti contents in an interstitial melt; and (2) periodic accumulation of the residual melt in front of this zone. Unlike liquid immiscibility leading to melt splitting into two phases, this liquid dissolved the residual components of the melt. Correspondingly, such an Fe-rich liquid has unusual properties and requires further study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call