Abstract
The ~1.74 Ga Damiao anorthosite complex, North China, is composed of anorthosite and leuconorite with subordinate melanorite, mangerite, oxide-apatite gabbronorite, perthite noritic (i.e., jotunitic) and ferrodioritic dykes. The complex hosts abundant vein-, pod- and lens-like Fe–Ti–P ores containing variable amounts of apatite (10–60 modal%) and Fe–Ti oxides. In addition to Fe–Ti–P ores, there are also abundant Fe–Ti ores which are closely associated with Fe–Ti–P ores in the deposit. Most of Fe–Ti–P ores are dominated by Fe–Ti oxides and apatite, devoid of silicate minerals, mineralogically similar to the common nelsonites elsewhere. In contrast, Fe–Ti ores are dominated by Fe–Ti oxides with minor apatite (<5 modal %). The parental magma of these ores, estimated from olivine and apatite compositions using mineral-melt partition coefficients, has composition similar to the ferrodioritic dykes. Fe–Ti–P ores have variable Fe–Ti oxides and apatite proportions, indicating that they are cumulates. Their simple assemblage of Fe–Ti oxides and apatite and local net-texture suggest that the Fe–Ti–P ores in Damiao have formed from nelsonitic melts immiscibly separated from the ferrodioritic magma during late-stage differentiation. Fe–Ti ores are also cumulates and have mineral compositions similar to Fe–Ti–P ores. The close association between Fe–Ti and Fe–Ti–P ores indicates that the Fe–Ti ores may have also formed from the nelsonitic melts. We proposed that differentiation of nelsonitic melts accompanied by gravity settling is responsible for the formation of Fe–Ti and Fe–Ti–P ores. Such a differentiation process in nelsonitic melts is well supported by variations of Sr, Y, Th, U, REE and Eu/Eu* of apatite in Fe–Ti–P ores. Using oxides/apatite ratio of 2:1 and compositions of apatite and calculated primary oxides, we estimate the composition of the nelsonitic melt as ~52.0 wt% Fe2O3t, ~18.5 wt% CaO, ~14.2 wt% P2O5, ~8.7 wt% TiO2, ~4.0 wt% Al2O3 and ~1.1 wt% MgO with minor SiO2, K2O, Na2O and F. Such a nelsonitic melt is suggested to be possibly conjugated with Si-rich melts compositionally similar to the Damiao jotunitic dykes (~50 wt% SiO2 and ~15 wt% Fe2O3t) which may subsequently evolve to mangeritic rocks in Damiao. Our modeling also indicates that the onset of immiscibility occurs at a time when the evolved melt has ~44 wt% SiO2, ~21 wt% Fe2O3t, ~3.0 wt% TiO2 and ~2.6 wt% P2O5. High oxygen fugacity and phosphorous content in magmas may play important roles in the immiscibility of nelsonitic magmas, including promoting iron enrichments and widening the two-liquid field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have