Abstract

Seed-borne fungal symbionts (endophytes) provide many cool-season grass species with biological protection from biotic and abiotic stresses. The endophytes are asexual, whereas closely related sexual species of genus Epichloë (Clavicipitales) cause grass choke disease. Perennial ryegrass (Lolium perenne) is a host of two endophyte taxa, LpTG-1 (L. perenne endophyte taxonomic grouping one = Acremonium lolii) and LpTG-2, as well as the choke pathogen, Epichloë typhina (represented by isolate E8). Relationships among these fungi and other Epichloë species were investigated by analysis of gene sequences, DNA polymorphisms and allozymes. The results indicate that LpTG-2 is a heteroploid derived from an interspecific hybrid. The LpTG-2 isolates had two copies each of nine out of ten genes analyzed (the exception being the rRNA gene locus), and the profiles for seven of these were composites of those from E. typhina E8 and A. lolii isolate Lp5. Molecular phylogenetic analysis grouped the two beta-tubulin genes of LpTG-2 into separate clades. One (tub2-1) was related to that of E. typhina E8, and the other (tub2-2) to that of A. lolii. The mitochondrial DNA profile of LpTG-2 was similar to that of A. lolii, but its rRNA gene sequence grouped it with E. typhina E8. A proposed model for the evolution of LpTG-2 involves infection of a L. perenne-A. lolii symbiotum by E. typhina, followed by hybridization of the two fungi. Such interspecific hybridization may be a common and important mechanism for genetic variation in Epichloë endophytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call