Abstract

BackgroundIdentification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. The objectives of this study were to determine genetic variations in heat tolerance associated with phenotypic and physiological traits and to identify molecular markers associated with heat tolerance in a diverse collection of perennial ryegrass (Lolium perenne L.).ResultsPlants of 98 accessions were subjected to heat stress (35/30 °C, day/night) or optimal growth temperature (25/20 °C) for 24 d in growth chambers. Overall heat tolerance of those accessions was ranked by principal component analysis (PCA) based on eight phenotypic and physiological traits. Among these traits, electrolyte leakage (EL), chlorophyll content (Chl), relative water content (RWC) had high correlation coefficients (− 0.858, 0.769, and 0.764, respectively) with the PCA ranking of heat tolerance. We also found expression levels of four Chl catabolic genes (CCGs), including LpNYC1, LpNOL, LpSGR, and LpPPH, were significant higher in heat sensitive ryegrass accessions then heat tolerant ones under heat stress. Furthermore, 66 pairs of simple sequence repeat (SSR) markers were used to perform association analysis based on the PCA result. The population structure of ryegrass can be grouped into three clusters, and accessions in cluster C were relatively more heat tolerant than those in cluster A and B. SSR markers significantly associated with above-mentioned traits were identified (R2 > 0.05, p < 0.01)., including two pairs of markers located on chromosome 4 in association with Chl content and another four pairs of markers in association with EL.ConclusionThe result not only identified useful physiological parameters, including EL, Chl content, and RWC, and their associated SSR markers for heat-tolerance breeding of perennial ryegrass, but also highlighted the involvement of Chl catabolism in ryegrass heat tolerance. Such knowledge is of significance for heat-tolerance breeding and heat tolerance mechanisms in perennial ryegrass as well as in other cool-season grass species.

Highlights

  • Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species

  • Values of principal component analysis (PCA) ranking of heat tolerance and physiological traits were averaged across ryegrass accessions in each phylogenetic cluster (Table 4), and the results showed that averaged PCA ranking values of accessions in cluster C (61.67) were significantly higher than those in clusters A and B (2.65 and 7.89, respectively), suggesting that accessions in clusters A and B were less heat tolerant than those in cluster C

  • In summary, heat tolerance varied widely among 98 accessions of perennial ryegrass examined in this study

Read more

Summary

Introduction

Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. To make good use of the germplasm pool, it is essential to understand their genetic diversity as well as physiological and molecular factors underlying heat stress tolerance for the breeding of heat-tolerant cultivars. Understanding the genetic structure and phenotypic diversity using phenotypic traits and molecular markers is the basis of parental selection for trait improvement in breeding, such as for heat tolerance [5,6,7]. In the case of cool-season grass breeding for heat tolerance, such information of closely associated physiological trait(s) to heat tolerance is still largely unclear

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call