Abstract
AbstractNanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.