Abstract

In this work, the growth kinetics of thiol-capped PbS nanoparticles was studied. Two-stage growth process was observed, which was controlled first by oriented attachment (OA) mechanism and then by the hybrid Ostwald ripening (OR) and OA mechanism. Different from the NaOH-ZnS system, where OA will occur between any two multilevel nanoparticles, an OA kinetic model only considering the attachment related to original particles was fitted well with the experimental results. Analysis reveals that this model may be a universal one to describe the OA crystal growth process of nanocrystals capped with easily destroyed ligands, such as thiol-ZnS in the previous report. The OA crystal growth characteristics determined by the surface agent were discussed and compared. We propose that with stronger surface capping, the OR growth of nanocrystals is hindered, which facilitates the size controlling via OA kinetics during nanosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call