Abstract

We present unified bijections for maps on the torus with control on the face-degrees and essential girth (girth of the periodic planar representation). A first step is to show that for d≥3 every toroidal d-angulation of essential girth d can be endowed with a certain ‘canonical’ orientation (formulated as a weight-assignment on the half-edges). Using an adaptation of a construction by Bernardi and Chapuy, we can then derive a bijection between face-rooted toroidal d-angulations of essential girth d (with the condition that, apart from the root-face contour, no other closed walk of length d encloses the root-face) and a family of decorated unicellular maps. The orientations and bijections can then be generalized, for any d≥1, to toroidal face-rooted maps of essential girth d with a root-face of degree d (and with the same root-face contour condition as for d-angulations), and they take a simpler form in the bipartite case, as a parity specialization. On the enumerative side we obtain explicit algebraic expressions for the generating functions of rooted essentially simple triangulations and bipartite quadrangulations on the torus. Our bijective constructions can be considered as toroidal counterparts of those obtained by Bernardi and the first author in the planar case, and they also build on ideas introduced by Despré, Gonçalves and the second author for essentially simple triangulations, of imposing a balancedness condition on the orientations in genus 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.