Abstract

Various two-dimensional (2D) NMR techniques are reported on a bent-core mesogen 4,6-dichloro-1,3-phenylenebis[4'-(9-decenyloxy)-1,1'-biphenyl] carboxylate in its nematic and solid phases in order to unambiguously assign its carbon-13 NMR spectrum. The (13)C chemical shifts from the molecular core were studied as a function of temperature to extract its molecular geometry and orientational order tensor. To this end, the chemical shift anisotropy tensors of some carbon sites were measured in the solid state of this mesogen using a recent method called the separation of undistorted powder patterns by effortless recoupling (SUPER). The average bending angle subtended by the two arms of the bent-core structure is determined to be 148.7 degrees. The C-H dipolar couplings obtained from the separated local field (SLF) experiment for the aromatic rings are used to find the local order parameter tensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call