Abstract

We evaluate drive currents and consumption powers of InAs and Si nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) with various crystal orientations, by using a ballistic MOSFET model coupled with tight-binding band structure calculation. We demonstrate that performance dependence on the wire orientation is not significant in InAs NWFETs compared to Si NWFETs, due to an isotropic nature of the Γ valley, and furthermore, a lower power switching is expected in InAs NWFETs even if the gate oxide thickness reduces down to a quantum capacitance limit. The present results suggest that InAs NWFETs have the advantage over the Si counterpart in terms of lower power operation and flexibility in layout design of integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.