Abstract

In situ straining experiments were performed in a TEM on an equimolar CoCrFeMnNi (Cantor) high entropy alloy at room and cryogenic temperature. Perfect and partial dislocation activity were recorded in both cases. Twinning directly follows the development of partial dislocation shearing that has various origins (perfect dislocation splitting, anchoring). It is shown that, although twinning is more frequently observed at liquid nitrogen temperature, its prevalence depends mainly on crystal orientation. As a result, twinning and perfect dislocation plasticity are likely to occur jointly in random oriented polycrystals, even at early stages of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.