Abstract

The determination of nitrogen-vacancy centers plays an important role in quantum information sensing. Efficiently and rapidly determining the orientation of multiple nitrogen-vacancy center s in a low-concentration diamond is challenging due to its size. Here, we solve this scientific problem by using an azimuthally polarized beam array as the incident beam. In this paper, the optical pen is used to modulate the position of beam array to excite distinctive fluorescence characterizing multiple and different orientations of nitrogen-vacancy centers. The important result is that in a low concentration diamond layer, the orientation of multiple NV centers can be judged except when they are too close within the diffraction limit. Hence, this efficient and rapid method has a good application prospect in quantum information sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call