Abstract

Effects of nitrogen quadrupole coupling tensors on ESEEM spectra are discussed. It is shown from theoretical considerations that the spectra, especially the double quantum transition line, are strongly affected by changes of tensor orientation in the magnetic field. Model calculations for angle-selected nitrogen ESEEM spectra of copper complexes in the disordered state show that the double quantum transition line changes its intensity with the resonance magnetic field set position in the EPR spectrum. These model calculations also show that estimation of the orientation of the imidazole type ligands with respect to theg principal axes may be easily made without any tedious processes of computer simulation of the whole ESEEM spectral pattern. The usefulness of the method is experimentally shown by applying it to the structural studies of the copper complexes of 2-(2′-pyridyl)imidazole and 2(2′-pyridyl) benzimidazole and their six coordinated complexes with nitrogeneous bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.