Abstract

With the era of Internet of Things (IoT), antennas that can adapt to different radio frequency environments have become highly desirable. These reconfigurable antennas must be compact to suit the futuristic IoT devices, be low cost for implementation on billions of devices, and be robust to the presence of nearby electronics. This paper demonstrates a novel 2.4 GHz 3D Cubic Antenna System, which comprises of a cube package with six microstrip patch antennas, one on each face. The system with embedded electronics, is aware of its orientation and reconfigures its radiation pattern automatically by switching ON the appropriate patch antenna for a focused communication with a boresight receiver. Alternately, if the position of the receiver is unknown, a quasi-isotropic radiation pattern can be achieved by providing the right phase conditions to all the patches to radiate simultaneously. The ground plane of the antennas provides a shield between the radiators and the electronics. In the focused mode, 10 dB more power is received as compared to the quasi-isotropic mode, which results in an energy efficient communication. While the quasi-isotropic mode provides an all-around radiation coverage with a gain variation of 6.4 dB for the entire 3D sphere, which is one of the best reported experimental value in literature for IoT compatible antenna systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.