Abstract

Inflammation is involved in noise-induced hearing loss (NIHL), but the mechanism is still unknown. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which triggers the inflammatory cascade, has been implicated in several inflammatory diseases in response to oxidative stress. However, whether the NLRP3 inflammasome is a key factor for permanent NIHL is still unknown. In this study, quantitative real-time polymerase chain reaction (qPCR), western blot, and enzyme-linked immunosorbent assays (ELISAs) demonstrated that the expression levels of activated caspase-1, interleukin (IL)-1β, IL-18, and NLRP3 were significantly increased in the cochleae of mice exposed to broadband noise (120 dB) for 4 h, compared with the control group. These results indicate that the activation of inflammasomes in the cochleae of mice during the pathological process of NIHL as well as NLRP3, a sensor protein of reactive oxygen species (ROS), may be key factors for inflammasome assembly and subsequent inflammation in cochleae. Moreover, many recent studies have revealed that NEK7 is an important component and regulator of NLRP3 inflammasomes by interacting with NLRP3 directly and that these interactions can be interrupted by oridonin. Here, we further determined that treatment with oridonin could indeed interrupt the interaction between NLRP3 and NEK7 as well as inhibit the downstream inflammasome activation in mouse cochleae after noise exposure. Furthermore, we tested anakinra, another inflammatory inhibitor, and it was shown to partially alleviate the degree of hearing impairment in some frequencies in an NIHL mouse model. These discoveries suggest that inhibiting NLRP3 inflammasomes and the downstream signaling pathway may provide a new strategy for the clinical treatment of NIHL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.