Abstract

Owing to recent interest in the production of flexible devices, it is necessary to develop a more convenient approach in which silicon (Si) thin film transistors (TFTs) are fabricated directly onto the flexible substrates at low substrate temperatures. Unfortunately, the physical limitations of conventional plasma-enhanced chemical vapor deposition (PECVD) under low pressures becomes a critical obstacle. In this study, Si film deposition using PECVD under atmospheric pressure excited by very high-frequency electrical power was investigated to overcome this issue. Tetramethylsilane [Si(CH3)4] is used as a source gas that is much safer than silane (SiH4) gas. We investigated the effects of the reactive gas concentration and specific energy (the ratio of input power to unit volume of the reaction gas) on carbon incorporation into the resultant films. Based on the results, we discuss the possibility of forming Si films with sufficiently low carbon content, which is applicable to Si TFTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.