Abstract

Some organophosphate di-esters (di-OPEs) have been found to be more toxic than their respective tri-esters. The environmental occurrence of di-OPEs remains largely unclear. A total of 106 water samples, including 56 drinking water (bottled, barreled, and tap water) and 50 surface water (lake and river) samples were collected and analyzed for 10 organophosphate tri-esters (tri-OPEs) and 7 di-OPEs. The concentrations (range (median)) of ∑7di-OPE were 2.8–22 (9.7), 1.1–5.8 (2.6), 3.7–250 (120), 13–410 (220), and 92–930 (210) ng/L in bottled water, barreled water, tap water, lake water, and river water, respectively. In all types of water samples, tris(1-chloro-2-propyl) phosphate was the dominant tri-OPE compound. Diphenyl phosphate was the predominant di-OPE compound in tap water and surface water, while di-n-butyl phosphate and bis(2-ethylhexyl) phosphate was the dominant compound in bottled water and barreled water, respectively. Source analysis suggested diverse sources of di-OPEs, including industrial applications, effluents of municipal wastewater treatment plants, degradation from tri-OPEs during production/usage and under natural environmental conditions. The non-carcinogenic and carcinogenic risks of OPEs were lower than the theoretical threshold of risk, indicating the human health risks to OPEs via drinking water consumption were negligible. More studies are needed to explore environmental behaviors of di-OPEs in the aquatic environment and to investigate ecological risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call