Abstract

Cyclopropane is a prevalent structural unit in natural products and bioactive compounds. While the transition metal-catalyzed alkene cyclopropanation of functionalized compounds such as α-diazocarbonyl derivatives has been well established and provides straightforward access to cyclopropanes, cyclopropanation directly from the more stable and simpler methylene compounds has remained an unsolved challenge despite the highly desirable benefits of minimal prefunctionalization and increased operational safety. Herein we report an electrocatalytic strategy for the cyclopropanation of active methylene compounds, employing an organic catalyst. The method shows a broad substrate scope and excellent scalability, requires no metal catalyst or external chemical oxidant, and provides convenient access to several types of cyclopropane-fused heterocyclic and carbocyclic compounds. Mechanistic investigations suggest that the reactions proceed through a radical-polar crossover process to form the two new carbon-carbon bonds in the nascent cyclopropane ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.