Abstract

The living radical polymerization of methyl methacrylate initiated from aromatic sulfonyl chlorides and catalyzed by the new catalytic systems CuSBu/bpy CuSPh/bpy and CuCCPh/bpy (bpy = 2,2′-bipyridine) is described. For a target degree of polymerization of 200, lowering the ratio of catalyst to sulfonyl chloride group from 1/1 to 0.25/1 mol/mol decreases the values of the experimental rate constant of polymerization from 5.12 × 10−2, 2.4 × 10−2, and 1.87 × 10−2 min−1 to 1.8 × 10−3, 4.9 × 10−3, and 4.2 × 10−3 min−1 for CuSBu, CuSPh, and CuCCPh, respectively, whereas the corresponding initiator efficiency increases from 62 to 99%. The external orders of reaction in the catalyst are 0.79 for CuSPh, 0.88 for CuCCPh, and 1.64 for CuSBu. A mechanistic interpretation that involves the in situ generation of, most likely, the real catalyst CuCl, starting from combinations of CuSBu, CuSPh, and CuCCPh and sulfonyl chloride or alkyl halide growing species, is suggested. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4353–4361, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.