Abstract
Ultrafiltration experiments using new small ultracentifugal filter devices were performed at different pore size cut-offs to allow the study of organo-colloidal control on metal partitioning in water samples. Two shallow, circumneutral pH waters from the Mercy site wetland (western France) were sampled: one dissolved organic carbon (DOC)- and Fe-rich and a second DOC-rich and Fe-poor. Major- and trace-element cations and DOC concentrations were analysed and data treated using an ascendant hierarchical classification method. This reveals the presence of three groups: (i) a “truly” dissolved group (Na, K, Rb, Ca, Mg, Ba, Sr, Si and Ni); (ii) an inorganic colloidal group carrying Fe, Al and Th; and (iii) an organic colloidal group enriched in Cr, Mn, Co, Cu and U. However, REE and V have an ambivalent behaviour, being alternatively in the organic pool and in the inorganic pool depending on sample. Moreover, organic speciation calculation using Model VI were performed on both samples for elements for which binding constants were available (Ca, Mg, Ni, Fe, Al, Th, Cr, Cu, Dy, Eu). Calculation shows relatively the same partitioning of these elements as ultrafiltration does. However, some limitations appear such as (i) a direct use of ultrafiltration results which tends to overestimate the fraction of elements bound to humic material in the inorganic pool as regards to model calculations as well as, (ii) a direct use of speciation calculation results which tends to overestimate the fraction of elements bound to humic material in the organic pool with regard to ultrafiltration results. Beside these limitations, one can consider that both techniques, ultrafiltration and speciation calculation, give complementary information, especially for more complex samples where inorganic and organic colloids compete.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have