Abstract

Oily wastewater discharge causes severe environmental pollution and resource waste, requiring the development of low-cost adsorbents with good hydrophobicity. This study presents the preparation and use of a novel highly hydrophobic adsorbent based on natural vermiculite clay minerals to separate free/emulsified oil-water mixtures. Vermiculite was first activated with sulfuric acid and potassium hydroxide to increase its adsorption capacity and surface area. The sample was then modified with cetyltrimethylammonium bromide (CTAB) to change the wetting properties from hydrophilic to hydrophobic and increase oil adsorption. XRD, XRF, FESEM, BET, FTIR, and zeta potential analyses were carried out to determine changes in texture, morphology, and chemical composition of vermiculite affected by acid, base and acid-base activation. According to the results, the acid-base activation process was selected for vermiculite treatment before CTAB modification, which demonstrated a high oil adsorption selectivity (1910.6 %) compared to raw vermiculite (44.14 %). Effect of CTAB concentration on vermiculite's wetting properties was studied. The results confirmed that the acid-base activated sample modified at 0.9 mmol.L−1 near the critical micelle concentration of CTAB exhibited highly hydrophobic properties (water contact angle of 148° ± 1°). For oil-in-water emulsions, the treated adsorbent demonstrated a high oil removal efficiency of 96.4 %. Additionally, a packed layer of highly hydrophobic vermiculite was applied for free heavy/light oil-water mixture and water-in-oil emulsion separation. The performance test for separation of free oil-water mixture and water-in-oil emulsion showed high separation efficiency (all above 90 %). The reusability of highly hydrophobic vermiculite as well as the effect of oil type, the thickness of the adsorbent layer, and the height of the water phase on separation performance were also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.