Abstract
AbstractRechargeable Li−Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2. Herein, we propose an amine‐functionalized covalent organic framework (COF) with catalytic activity, namely COF−NH2, that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li−Cl2 cell. The resulting Li−Cl2 cell using COF−NH2 (Li−Cl2@COF−NH2) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR−LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li−Cl2@COF−NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at −20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li−Cl2 batteries enabled by organocatalyst enlighten an arena towards high‐energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.