Abstract
Rechargeable Li-Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2 . Herein, we propose an amine-functionalized covalent organic framework (COF) with catalytic activity, namely COF-NH2 , that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li-Cl2 cell. The resulting Li-Cl2 cell using COF-NH2 (Li-Cl2 @COF-NH2 ) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR-LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li-Cl2 @COF-NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at -20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li-Cl2 batteries enabled by organocatalyst enlighten an arena towards high-energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.